
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

THESIS

Identifying Non-Functional Requirements from Mobile Apps User’s

Reviews using Deep Learning

Author: Nasry Alladaa (1185270)

Supervisor: Dr. AbuAlsoud Hanani

November 19, 2023

https://birzeit.edu

i

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

Identifying Non-Functional Requirements from Mobile Apps User’s Reviews

using Deep Learning

Ð@Y
	
j
�
J�AK. ÈñÒjÖÏ @

	

�
KAêË @

�
HA

�
®J
J.¢

�
� ú

×Y

	
j
�
J�Ó

�
HAªk. @QÓ

	áÓ
�
éJ

	
®J

	
£ð Q�

	
ªË @

�
HAJ. Ê¢

�
JÖÏ AK.

�
HAÓñÊªÖÏ @ YK
Ym

�
�
'

�
�J
ÒªË@ ÕÎ

ª
�
JË @

Committee:

Dr. Abualsoud Hanani , Birzeit University.

Dr. Ahmad Abusnaina , Birzeit University.

Dr. Aziz Qaroush, Birzeit University.

A thesis submitted in fulfilment of the requirements

for the degree of Maters in Software Engineering

February 13, 2024

https://birzeit.edu

ii

Identifying Non-Functional Requirements from Mobile Apps User’s Reviews

using Deep Learning

Thesis
Author : Nasry Alladaa

Approved by the thesis committee:

Dr. Abualsoud Hanani : (Chairman of the Committee)

Dr. Ahmed Abusnaina : (Member) (Member)

Dr. Aziz Qaroush : (Member) (Member)

Date of Defense:

February 13, 2024

iii

Declaration of Authorship

I, Nasri Alladaa, declare that this thesis titled, “Identifying Non-Functional

Requirements From Unconstrained Documents Using Natural Language Pro-

cessing and Machine Learning Approaches ” and the work presented in it are

my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master

degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

iv

Abstract

Nowadays, smartphones are so essential without them life seems impossi-

ble. The number of useful information carried by users reviews every day is

huge. The traditional way of extracting requirement-related information from a

huge number of reviews is not possible. Hence, Natural Language Processing

(NLP) and Machine Learning (ML) techniques were used to solve this problem

and make it easier for the requirement engineer to benefit from the large amount

of user reviews.

In this thesis, some of the state-of-the-art techniques in NLP were applied

for automatically classifying user’s reviews into requirement-related informa-

tion such as usability, reliability, performance, security, functional requirements,

and others. Some of the word embedding vectorization methods such as GPT3,

Word2Vec, GloVe, FastText, BERT, Dbert were used to represent the user’s text

reviews. The resulting feature vectors were used to extract the target software re-

quirement information with some of the traditional machine learning classifiers,

such as Random Forest, Naïve Bayes, and Artificial Neural Network (ANN) and

some deep learning classifiers such as Deep Neural Network (DNN), and Con-

volutional Neural Network (CNN).

In order to build and test the proposed systems, a dataset collected and used

in a previous study conducted by Al-Kilani was used. This dataset consists of

1061 annotated user’s reviews for apps in the healthcare domain. To make the

dataset larger and wider, another 1693 reviews were collected and manually

annotated form apps in different domains.

A set of experiments were conducted using Al-Kilani dataset and the ex-

tended dataset, The extended dataset includes Al-Kilani dataset and 1693 newly

v

collected reviews. To make the results comparable with the previous results

achieved by Al-Kilani, some of the experiments were conducted to recognize

three major classes (reliability, usability, and performance), and the others are

designed to recognize six classes (reliability, usability, performance, security,

functional requirements, and others).

For the three classes experiments, the results show that the deep learning-

based techniques (SL CNN, ML CNN, DNN) outperform the traditional tech-

niques. The best accuracy achieved by the Random Forest classifier trained and

evaluated on the TF-IDF features is 58%, compared with 82% achieved by the

DNN classifier trained on GPT3. Similarly, the deep learning techniques out-

perform the traditional techniques in the six classes experiments, with the best

accuracy of 56% compared with 49% achieved by the random forest.

 المستخلص

ي
. عدد مستحيلةها بدون الحياةوتبدو مهمة للغاية الهواتف الذكيةأصبحت ، هذه الأيامف

ي ينتجها المستخدمون يوميًا ضخم.
التعليقات والمراجعات لتطبيقات الهاتف المحمول الت

ودة التطبيقات. تحمل هذه المراجعات معلومات مفيدة عن هندسة المتطلبات لتحسي ج
الطريقة التقليدية لاستخراج المعلومات المتعلقة بالمتطلبات من عدد كبي من المراجعات غي

معالجة اللغات حديثة اذ وهي استخدام مفهوم استخدام تقنيات تملتجاوز هذه المشكلة ممكنة.
 هذا المتطلبات منتسهيل استفادة مهندس أدى إل الذي (ML) الآلي التعلمو (NLP)الطبيعية

. الهائلالكم من مراجعات المستخدمي

ي
ي هذه الأطروحة، تم تطبيق بعض التقنيات الحديثة ف

 (NLP)معالجة اللغات الطبيعية ف
مثل سهولة إل معلومات ذات صلة بالمتطلبات أتوماتيكي بشكل لتصنيف مراجعات المستخدم

 أثناء استخدام التطبيق، إضافة إل الأماندرجة ، التطبيق أداء، ةالتطبيق، الموثوقي ستخداما
ها. تم استخدام بعض أساليب توجيه تضمي الكلمات مثل للتطبيق المتطلبات الوظيفية وغي

GPT3 وWord2Vec وGloVe وFastText وBERT وDbert وزيادة العبارات تمثيلعادة ل
متجهات ال هذهاستخدام بالمستخدم. تم التطبيقات الخاصةمراجعات ل)متجهات(المشابه

نامج المستهدف باستخدام بعض مصنفات التعلم الناتجة لاستخراج معلومات متطلبات الير
واستخدام مصنفات التعلم الآلي Naïve Bayesو Random Forestالآلي التقليدية مثل
 . ANN, DNN, CNNالغي تقليدي مثل

ي تم جمعها من أجل بناء واختبار الأنظمة
حة، تم استخدام مجموعة البيانات الت المقي
. تتكون مجموعة البيانات هذه من ي

ي دراسة سابقة أجراها الكيلان
مراجعة 1061 واستخدامها ف

ي مجال الرعاية الصحية. ولجعل مجموعةمصنفة لمستخدم
البيانات أكير هذه تطبيقات ف

ي مجالات مختلفة تلفة من تطبيقات مخمراجعة أخرى 1693وأوسع، تم جمع
 تصنيفها و ف

 يدويًا.

ي
ي والبياناتتم إجراء مجموعة من التجارب باستخدام مجموعة بيانات الكيلان

 جمعها تم الت
ي
ي تشمل مجموعة بيانات الكيلان

. ولجعل النتائج قابلة للمقارنة مع النتائج مراجعة 1693ووالت

، أجريت بعض التجارب ي
ي حققها الكيلان

للتعرف على ثلاث فئات رئيسية السابقة الت
)الاعتمادية، وسهولة الاستخدام، والأداء(، والبعض الآخر صممت للتعرف على ستة فئات
ها(.)الاعتمادية، وسهولة الاستخدام، والأداء والأمن والمتطلبات الوظيفية وغي

vi

 لتعلم العميقبالنسبة لتجارب الفئات الثلاثة، أظهرت النتائج أن التقنيات القائمة على ا
((SLCNN, ML CNN, DNN تتفوق على التقنيات التقليدية. أفضل دقة حققها مصنف

Random Forest ات % 82%، مقارنة بنسبة 58هي TF-IDFالذي تم تدريبه وتقييمه على مي
ي حققها مصنف

وبالمثل، تتفوق تقنيات التعلم العميق على .GPT3المدرب على DNNالت
ي تجارب الفئات ال

ي 49% مقارنة بـ 56ستة، بأفضل دقة بلغت التقنيات التقليدية ف
% الت

 Random Forest .حققتها

vii

viii

Acknowledgements

Firstly, I would like to acknowledge and give my warmest thanks to my

supervisor Dr. Abualsoud Hanani who made this work possible. His guidance,

continuous support, and advice carried me through all stages of writing this the-

sis. In addition, I would like to thank the faculty at my wonderful and beloved

university, Birzeit University.

My sincere thanks also go to my colleagues who have been with me through

this special experience. Appreciation and acknowledgment for the volunteers

who assisted me during the manual classification process in this thesis.

I must give special thanks to all my managers in my previous company

Jawwal and to my current company AXSOS Academy for providing support

and bringing the weight of their considerable experience and knowledge to this

thesis.

Finally, I must express my deep gratitude to my family and friends for pro-

viding me with unfailing support and continuous encouragement throughout

this work. This accomplishment would not have been possible without you.

Thank you.

ix

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Problem statement . 2

1.3 Objectives . 3

1.4 Research Questions . 4

1.5 Contributions . 4

1.6 Thesis structure . 5

2 Literature Review 6

3 Research Methodology 13

3.1 Dataset description : . 13

3.1.1 Al-Kilani dataset . 14

3.1.2 Extended dataset . 15

3.1.3 Data annotation . 18

3.1.4 Manual annotation results 25

3.1.5 Kappa Test . 26

3.2 Research approach . 27

3.3 System design . 27

3.3.1 Preprocessing . 28

x

3.3.2 Tokenization . 29

3.3.3 Text cleaning . 29

3.3.4 Normalization . 30

3.4 Features engineering . 30

3.4.1 Syntactic vectorization methods 30

3.4.2 Word embedding methods 31

3.5 Machine Learning Classifiers . 36

3.5.1 Traditional machine learning 37

3.5.2 Deep learning classifiers 38

3.6 Evaluation metric . 42

4 Experiments and Results 44

4.1 Experimental setup : . 44

4.2 Preprocessing : . 45

4.2.0.1 Text cleaning: . 45

4.2.0.2 Tokenization . 45

4.2.0.3 Normalization: 46

4.3 Feature engineering . 46

4.4 Experiments with the Traditional Techniques 47

4.4.1 Experiment set 1: Al-Kilani dataset (three classes) 47

4.4.2 Experiment set 2: Extended Dataset (Al-Kilani + New datasets) 49

4.4.3 Experiment set 3: Al-Kilani Dataset (6 classes) 50

4.5 Experiments using Deep Learning 52

4.5.1 Experiment set 4: Al-Kilani Dataset (three classes) 52

4.5.2 Experiment set 5: Extended Dataset 56

4.5.3 Experiment set 6: Al-Kilani Dataset (6 classes) 60

4.6 Comparison with Al-Kilani baseline system 65

xi

5 Conclusion and future work 68

5.1 Conclusion . 68

5.2 Future Work . 69

6 Appendix A 70

xii

List of Figures

3.1 The selected mobile applications with their overall rating. 17

3.2 Count of extended user reviews dataset per domain. 18

3.3 Manual users review annotation flowchart. 20

3.4 Website main page - Part 1. 22

3.5 Website main page - Part 2. 23

3.6 Register and log in to start the task. 24

3.7 Classification page with an example 24

3.8 System design overview . 28

3.9 Architecture of Word2Vec [15]. 32

3.10 GloVe Architecture [21]. 33

3.11 BERT architecture [17]. 33

3.12 D-bert model architecture [18]. 34

3.13 GPT3 model architecture [4]. 36

3.14 FastText architecture [34]. 37

3.15 CNN Architecture [29] . 39

3.16 System design main phases. 41

4.1 The results of traditional machine learning (RF) with TD-IDF and

BOW for Al-Kilani dataset. 48

xiii

4.2 The results of traditional machine learning (Naïve Bayes) with

TD-IDF and BOW for Al-Kilani dataset. 48

4.3 The results of traditional machine learning (RF) with TD-IDF and

BOW for the Merged dataset. 49

4.4 The results of traditional machine learning (Naïve Bayes) with

TD-IDF and BOW using extended dataset. 50

4.5 The results of traditional machine learning (RF) with TD-IDF and

BOW for Al-Kilani dataset. 51

4.6 The results of traditional machine learning (Naïve Bayes) with

TD-IDF and BOW for Al-Kilani dataset with 6 classes. 51

4.7 The results of ANN with pre-trained models for the Al-Kilani

dataset. 54

4.8 The results of DNN with pre-trained models for the Al-Kilani

dataset. 54

4.9 The results of SL-CNN with pre-trained models for the Al-Kilani

dataset. 56

4.10 The results of ML-CNN with pre-trained models for the Al-Kilani

dataset. 56

4.11 The results of ANN with pre-trained models for the extended

dataset. 58

4.12 The results of DNN with pre-trained models for the extended

dataset. 58

4.13 The results of SL CNN with pre-trained models for the extended

dataset. 60

4.14 The results of ML CNN with pre-trained models for the extended

dataset. 60

xiv

4.15 The results of ANN with pre-trained models for the Al-Kilani

dataset (6 classes). 62

4.16 The results of DNN with pre-trained models for the Al-Kilani

dataset (6 classes). 62

4.17 The results of SL CNN with pre-trained models for the Al-Kilani

dataset (6 classes). 63

4.18 The results of ML CNN with pre-trained models for the Al-Kilani

dataset (6 classes). 64

6.1 UML Diagram . 70

xv

List of Tables

2.1 Literature review summary and comparison 11

2.2 Accuracy of Classification Models on News Categorization, and

Topic Classification Tasks . 12

3.1 Statistics about the Al Kilani dataset. 14

3.2 Sixteen selected mobile applications per domain. 16

3.3 Count of extended user reviews dataset per application. 19

3.4 First author user’s review and old dataset classifications. 25

3.5 All datasets classification. 26

4.1 Environment setup . 44

4.2 Al-Kilani dataset experiments performance metrics with traditional

classifiers. 47

4.3 Merged dataset experiments performance metrics with traditional

classifiers. 49

4.4 Al-Kilani dataset experiments performance metrics with traditional

classifiers. 50

4.5 The results of ANN and DNN classifiers using Al-Kilani dataset

with six classes. 53

4.6 SL CNN and ML CNN performance metrics with all pre-trained

models for Al-Kilani dataset. 55

xvi

4.7 ANN and DNN performance metrics with all pre-trained models

for the extended dataset. 57

4.8 SL CNN and ML CNN performance metrics with all pre-trained

for extended dataset. 59

4.9 ANN and DNN performance metrics with all pre-trained models

for Al-Kilani dataset (6 classes). 61

4.10 SL CNN and ML CNN performance metrics with all pre-trained

for Al-Kilani dataset (6 classes). 63

4.11 Comparison with Al-Kilani results 66

4.12 Comparison of traditional techniques based on accuracy. 67

1

Chapter 1

Introduction

1.1 Overview

Over the last few years, with the rapid spread of smartphones in worldwide

markets, mobile devices have become an essential part of our daily lives. This

caused exponential growth in mobile application development with a wide set

of diverse requirements. A good understanding of these new computer capa-

bilities has gained a lot of attention in the software engineering domain to keep

existing users and attract new users by satisfying their needs. There are many

approaches to eliciting users’ needs in the requirement elicitation phase before

starting development. In addition, we can extract requirements the functional

and non-functional requirements in other ways after launching the app through

user reviews. The review of mobile applications is considered an important re-

source of information for both developers and business owners. Software devel-

opers can early fix bugs, extract new features, or enhance existing features for

the new release of mobile apps, so that we can keep evolving all the time. Some

of the mobile apps have more than thousands of reviews posted on the different

app stores, such as Google Play Store for Android users or App Store for IOS

2

users.

Extracting requirement-related information (functional, non-functional, and

others) from the huge amount of user reviews automatically has been inves-

tigated in the previous studies. Various traditional techniques in the Natural

language Processing (NLP), such as Bag of Words (BoW) and Term-Frequency

– Inverse Document Frequency (TF-IDF), and Machine Learning (ML), such as

Random Forest (RF), and Naïve Bayes (NB), are successfully used for identify-

ing some types of the functional and non-functional requirements from the user

reviews. However, state-of-the-art techniques based on deep learning technolo-

gies have not been investigated for this task. Deep learning techniques include

word embeddings, which are based on the pre-trained models (e.g. Word2Vec,

BERT, D-BERT, GloVe, GPT3, FastText, etc), and deep neural networks classifiers

such as Convolutional Neural Network (CNN).

1.2 Problem statement

Nowadays and in the era of communication and information technology, many

of the traditional manual methods for collecting information have been changed.

For example, the traditional methods for getting the software requirements from

the users have been significantly changed. The number of software app users

has increased dramatically across the globe. On the other hand, the quantity

of information produced and published on the internet has increased exponen-

tially. Hence, inspecting for useful information related to the requirement engi-

neering using traditional methods becomes impossible. Therefore, using NLP

and machine learning techniques is the solution. In this thesis, some of the most

recent techniques in the NLP and machine learning models are used to recog-

nize the requirement-related information from the app’s reviews. Given the text

3

review, the system cleans it before computing representative numerical features,

which will be fed later to the machine learning classifier that predicts the type

of requirement-related information that exists in the given review.

1.3 Objectives

The main objectives of this study can be summarized in the following three di-

rections:

1. Extend Al-Kilani dataset to include more user reviews of more mobile ap-

plications from different domains such as education, telecommunication,

banking, financial services, diet and nutrition, etc. This helps in two direc-

tions: increasing the dataset allows studying the effectiveness of the pro-

posed techniques for recognizing more requirements, and applying deep

learning techniques that require a huge dataset.

2. Apply the effectiveness of the state-of-the-art techniques in the NLP, such

as Word2Vec, D-bert, BERT, Glove, and GPT3, for recognizing software

requirements from the mobile apps user reviews and compare them with

the traditional ones included in the reference study [19].

3. Apply traditional in machine learning (Random Forest, Naive Bayes) for

classifying user reviews into the specified requirements classes.

4. Apply deep learning techniques and more specifically deep neural net-

works and convolutional neural networks.

4

1.4 Research Questions

By the end of this thesis, we intend to present answers to the following possible

research questions:

RQ1: How well the word embedding pre-trained models can improve the

accuracy of identifying requirement-related information from the mobile apps

user reviews, compared with the traditional techniques?

RQ2: How well the deep learning-based classifiers (such as DNN and CNN)

can accurately recognize the requirement-related information from the mobile

apps user reviews, compared with the traditional classifiers?

RQ3: How effective are the traditional and deep learning techniques in rec-

ognizing the most common six software requirements compared with the three

classes’ classifications?

1.5 Contributions

This thesis includes the following contributions:

1. Extending AlKilani Dataset by collecting more users reviews from multi-

ple different applications on Google Play.

2. Extending the number of used classes from three classes in Alkilani Dataset

(Reliability, Security, and Performance) to six classes (Usability, Perfor-

mance, Reliability, Compatibility, Security, and Functional Requirements).

3. The collected reviews for the new dataset were gathered from different do-

mains (Education, Online Meetings, Social Media, Finance, Telecommuni-

cation, Health and Fitness).

5

4. Using deep learning techniques for feature extraction and classifications

such as CNN.

1.6 Thesis structure

This thesis is structured as follows: in Chapter 2, a detailed review of some

recent and related studies were reviewed. Chapter 3 presents a comprehensive

overview of the research methodology, where, Chapter 4 provides a detailed

description of the conducted experiments and the obtained results with some

discussion. The conclusion and the future work are explained in Chapter 5.

6

Chapter 2

Literature Review

Mobile apps that have better reviews achieve better ranking within stores and

increase the visibility for the end-users [25]. Several studies explained how the

users’ review classification and analysis could be conducted and the advantages

of user review analysis for the app’s success [8], [23], [25]. The literature review

was grouped into two parts the first one is about traditional and machine learn-

ing approaches below, and the second part is about deep learning techniques

with a comprehensive overview of conducted experiments and studies.

Maleej and Nabil et al [24] mentioned that a large number of user reviews

brings to the surface the necessity to automate user reviews classification. By

evaluating and comparing different classifiers, user reviews can be categorized

into four general groups. The first category is bugs report, which states the

defects in the application. Secondly, feature requests, which are user suggestions

to add new capabilities to the app that could be found in other apps. The third

one is user experience reviews, which reflect the helpfulness of the app while

users are experimenting with the app. The last category is user ratings, which is

the Star representation of the review, which usually holds the least information

[24].

7

Maleej and Nabil et al [24] contributed in their paper three areas. Providing

probabilistic techniques and heuristics based on star review, text length, and

linguistics. In addition, insights on data accuracy, and lastly, the design and

usage of review analytics tools [24].

Pagano and Maalej et al [27] investigated through an empirical study impor-

tant potentials in the requirement-engineering phase using user-driven meth-

ods. The study focuses on feedback usage, content, and impact. Feedback usage

can be divided into feedback frequency i.e when and how users make feedback

and feedback meta-data indicates the rating, feedback length, and helpfulness.

The second aspect is feedback content, which investigates the topics provided

in the reviews and their types. It also looks for patterns in the reviews of the

same type. Lastly, it studies the impact of feedback in the sense of how it affects

other users’ decisions to use the app and how it might affect others’ ratings. The

research method was done in two phases. The first is data preparation by col-

lecting data from app distributors like AppStore. The data consisted of different

available application categories divided equally on paid and free apps. By using

a scraping tool, the list of reviews was collected for each app and was connected

to application metadata and stored in MySQL database [27]. The second phase

was data analysis, which answers the research questions in the paper. For feed-

back usage, some descriptive statistics were used for analysis and hazard factors

exclusion. For feedback content, two different researchers manually classified a

randomly selected data set. For feedback impact, after combining metadata and

content another statistical model was applied to the resulting data [27]. How-

ever, the challenge arises in understanding how app stores can be a channel be-

tween users and developers, how developers can benefit from reviews for more

understanding to the user, and lastly what tools can be used to analyze these

reviews [27].

8

Iacob and Harrison et al [19] discussed that mobile application user’s re-

views are considered as an important source to get out with new valuable ideas

for a specific mobile app. The idea may be a new one or a modification on an

existing app. The huge amount of user’s reviews made it a challenge for devel-

opers or applications owners to figure out the trending feature upon user review,

and the feature that should be re-designed to perform better. To overcome these

challenges Iacob and Harrison et al [19] suggested a prototype in their paper

called MARA Which is Mobile Applications Review Analyzer that can help to

identify new features from online users’ reviews for specific apps. This proto-

type design is divided into three parts: first, get online users review for targeted

application, secondly mine the retrieved reviews by identifying complete sen-

tence or fragment from a sentence (pre-defined linguistics rules), finally sum-

marize the content of feature and present it into GUI.

Chandy and Gu et al [9] also did a comparison between the decision tree

model and Latent class graphical model using a dataset exported and labeled

from the IOS app store. The main goal of this comparison is to classify the spam

review on the app store by spam or malicious developers. Yang and Pedersen et

al [33] perform an empirical study to compare five selection methods of statisti-

cal learning of text categorization.

Chen and Zhang et al [10] discussed the steps of Ar-miner framework that is

used to extract the most informative user review from the large pool. Ar-miner

is made of five sequential steps. The first step the preprocessing, which works on

raw review data that converts it to sentence-level review then text-level review.

In text level review the reviews are cleaned from non-alphanumeric characters,

all characters are changed to lowercase, eliminated whitespaces, and words are

stemmed to the root format. The second step is filtering the review database

9

generated from preprocessing through trained machine learning that will auto-

matically eliminate non-informative reviews. Then comes the next step, which

is ‘grouping’ that combined reviews into groups that are more relevant to each

other. The machine learning technique used s topic modeling that assigns mul-

tiple topics to each review. The fourth step is ranking which is a flexible and

extensible model that measures the group score to indicate group importance

and instance score to indicate review importance. Higher group and instance

scores indicate more importance of the feature [10].

Lu and Liang et al [23], combined machining learning algorithms such as

Naïve Bayes, J48, Bagging with classification techniques such as BoW, TF-IDF,

CHI, AUR-BoW to classify user reviews into non-functional requirements such

as reliability, performance, usability, portability, functional requirement, and

others. User reviews of iBook and WhatApp mobile apps were used for this

experiment for two popular and different stores of applications and platforms

by using textual review and getting semantic from review using Augmented

User Review (AUR) [23].

The upcoming papers are all deep-learning based used for different aims for

example sentiment analysis, text classification, and question-answering. Yang

and Wang et al [32] proposed a feature extraction model for E-commerce prod-

uct reviews using Deep learning and sentiment lexicon. The model name is

SLCABG. The base of this model is the sentiment lexicon with Convolutional

Neural Network (CNN) and attention-based Bidirectional Gated Recurrent Unit

(BiGRU). To enhance the sentiment features in the reviews sentiment lexicon and

BERT were used and to extract the main sentiment features and classify the re-

views CNN and GRU were used. The used dataset reached 100000 user reviews

from very popular e-commerce websites in China. The result of this experiment

showed the sentiment lexicon with CNN and BiGRU can effectively improve the

10

performance of sentiment analysis of user reviews of accuracy 93.5%. Yang and

Wang mentioned that increasing the dataset will gradually improve the results.

This model can help e-commerce merchants improve the quality of their services

and attract customers through the obtained feedback.

Stawati and Nurdkholis et al [30] conducted a study for online popular trans-

portation service application user reviews. This study aims to know the opin-

ions of many people who use public transportation. The base of this model

is Word2vec for feature extraction and word embedding with support vector

machine algorithm (SVM). The result of this research showed that the accuracy

value is 89

Umer and Imtiaz et al [31] proposed a framework for long and short-text

classification. This model base is Fast Text for word embedding with CNN. The

used dataset contains seven popular benchmarks such as Amazon Twitter, Yelp,

US Airline, and Yahoo. . . The amount of user reviews was 100k. The result of

the experiment showed an accuracy of 95% which verifies that Fast text with

CNN increased the accuracy of classifying long and short text.

Li, Huang, and Ren et al [20] proposed a model named “AFKF” for medical

text classification that helped clinics and hospitals in decision support systems

which is an automated tool that improves patient care management. Medical

text classification was a big challenge for the authors because of medical abbre-

viations and terminologies. The base of this model is Doc2Vec, BERT, ALBERT,

RoBERTa for word embedding of the medical text and RNN and deep learning

classifier CNN for classifying the sentence and the documents. The dataset was

collected from hospitals on EMR texts (HICH). It contains 3700 real samples.

The results were that AFFK outperformed other traditional techniques such as

Random forest. The highest accuracy achieved by CNN is 90%.

Lokus and Stogiannidis et al [22] proposed a model for the classification of

11

text in the financial domain using a dataset called Banking77 with 77 different

classes containing around 13,000 examples. The results of state of art model

show that GPT-3.5 and GPT-4 as feature extraction techniques can outperform

fine-tuned, non-generative models.

Below table 2.1 provided a comprehensive overview of the studied and vis-

ited literature reviews. The summary and comparison as below:

TABLE 2.1: Literature review summary and comparison

Authors UR Accuracy Techniques Classes Task Classification
[30] 7000 89% W2V & SVM 2 SA
[32] 100000 93.5% BERT & CNN 2 SA
[8] 5422 82% RF 5 UR
[31] 100k 95% Fast Text & CNN 5 English news
[20] 3700 90% Doc2Vec, Bert & CNN 4 Medical terms

Abbreviations in the table "SA" stands for Sentiment analysis, "UR" stands

for User review classification, and "TB" stands for Technical Debt classification.

12

Minaee and Kalchbrenner et al [26] provided a comprehensive overview of

text classification-based experiments with deep learning techniques such as fea-

ture extraction, wording embedding techniques and classifiers. The experiments

include sentiment analysis, text classification, and question answering. Table

2.2 shows the accuracy of deep learning used techniques for text classification

experiments only. For the results in the table, Text GCN achieved the lowest

accuracy meanwhile BERT-large achieved 99.32%.

TABLE 2.2: Accuracy of Classification Models on News Catego-
rization, and Topic Classification Tasks

Method Accuracy
Text GCN 67.61

Simplfied GCN 88.50
Char-level CNN 90.49

CCCapsNet 92.39
LEAM 92.45

CapsuleNet B 92.50
Deep Pyramid CNN 93.13

ULMFiT 94.99
L MIXED 95.05

BERT-large 99.32
XLNet 95.51

13

Chapter 3

Research Methodology

The main objective of this study is to extract the most common software require-

ments from mobile app user’s reviews such as usability, performance, reliabil-

ity, compatibility, security, functional requirements, and others. By using these

users’ reviews written by users of sixteen selected mobile applications from the

Google Play store. Representative features are extracted from the text reviews

using natural language processing (NLP) techniques. Some of the recent ma-

chine learning and deep learning techniques are used for classification. The pro-

posed methodology can be divided into several pipelined stages, as follows.

3.1 Dataset description :

As mentioned earlier, we started with the available dataset that was collected

and used in the previous work conducted by Al Kilani et al [8], which is specified

in the healthcare domain. The dataset was extended for the same domain and

included user reviews from different domains such as users reviews from busi-

nesses and telecommunication, educational, financial, social media, and com-

munication mobile apps to achieve a balanced dataset that includes reviews for

14

the considered nonfunctional requirements. The extended dataset was collected

from Google play using an open-source tool named Web Harvy 1.

3.1.1 Al-Kilani dataset

The dataset of Al Kailani et al was collected using Chrome selenium driver. This

software is mainly used for user interface automation testing [1]. The authors

benefited from it to retrieve users’ reviews. Around 90,000 users reviews were

retrieved, all of them written in English. The dataset was retrieved from ten se-

lected mobile applications in the healthcare domain. Retrieved data include the

application name, rating and review description, username, and date of submit-

ting a review. A number of volunteers, with experience in the field, were asked

to label a randomly selected set of reviews in terms of sentiment (negative, pos-

itive, or neutral). In addition, for each review from the selected reviews, they

were asked to select one of five software requirement categories (bug, new fea-

ture, performance, security, usability). Data analysis showed that 5422 reviews

were classified at least one time by one volunteer or by the first author according

to category labeling, whereas, 1406 reviews were labelled by two experts. Table

3.1 below shows some statistics about the Al-Kilani dataset.

TABLE 3.1: Statistics about the Al Kilani dataset.

Statistics about the Al Kilani dataset
Classes Req classification counts Unique reviews No. audited reviews auditors

Bug 2758 1513 867
Usability 839 666 142

New Feature 1170 748 308
Performance 555 465 72

Security 100 75 17
Total 5422 3467 1406

1https://www.webharvy.com/

15

3.1.2 Extended dataset

Al-Kilani dataset has some limitations, in terms of data size, number of software

requirements with sufficient data, and that all of the used app are from one do-

main, healthcare. This motivates us to collect more data and extend Al-Kilani

to overcome these limitations. The first step to extract user reviews for mobile

applications from different domains is to select a group of commonly used app

with sufficient user reviews. The selection criteria is based on popular apps

by users of well-known companies and organizations and the huge number of

users’ reviews. Moreover, these apps had shown a great boom in the last two

years, especially during the corona pandemic and lockdowns. During this pe-

riod, people worldwide started to find out to get things done at the same time

keep social distancing. According to Google trends 2 , the terms “Coursera”,

“Udemy - Online Courses”, “ZOOM”, “Webinar”, “Google Meet”, “Microsoft

Teams”, “WhatsApp Messenger”, “Skype”, “PayPal Mobile Cash”, “NetDania”,

“Investing.com”, “MyFitnessPal” had shown an increase in Google searching

engine worldwide. Sixten mobile applications from six domains have been se-

lected to extract users’ reviews shown in Table 3.2 below.

Overall count of users reviews were gathered from Google Playstore to show

the huge amount of available users review for the selected apps, which reflects

the usage, and popularity of apps. From the above Table 3.2, it is clear that What-

sApp messenger had the highest overall user’s reviews with approximately 153M

user reviews. Skype had second place with 11M overall user’s reviews. The

lowest overall users review was for Ana Paltel app with 4,5K users reviews.

Most of the selected mobile applications for the extended dataset have a rat-

ing of more than 3 out of 5. Investing.com app has a higher rating of 5 out of 5.

2https://trends.google.com/trends/?geo=PS

16

TABLE 3.2: Sixteen selected mobile applications per domain.

16 mobile applications per domain.
App Name Overall Users reviews Domain
Coursera 129,326 Education

Udemy - Online Courses 337,930 Education
ZOOM Cloud Meetings 3,398,354 Online Meetings

GoToWebinar 120,115 Online Meetings
Google Meet 1,985,037 Online Meetings

Microsoft Teams 4,434,701 Online Meetings
WhatsApp Messenger 152,876,497 Social Media

Skype - free IM video calls 11,416,141 Social Media
NetDania Forex Trader 24,377 Finance

PayPal Mobile Cash 2,352,111 Finance
Investing.com 479,496 Finance

Bank of Palestine 12,224 Finance
Ana Paltel 4,426 Telecommunication

My Account (Jawwal) 32,033 Telecommunication
Home Workout - Bodybuilding 71,428 Health and Fitness

MyFitnessPal 2,462,465 Health and Fitness

The average rating of all apps is 4.1 out of 5 which means that users generally

are satisfied with using these apps. The overall rating of 16 selected mobile apps

is shown in Figure 3.1 below.

The total retrieved user reviews are 1,718 reviews all written in English. The

user’s reviews were distributed into multiple different domains as mentioned

previously. The percentage of user reviews per domain can be shown below

in the pie chart shown in Figure 3.2. Health & Fitness domain has the higher

percentage of total extracted reviews with 28% that equals 480 users reviews,

then finance domain with 25% which equals 430 users reviews, business domain

with 16% which equals 276 users reviews. Education, Online meetings, and

Social media domains have percentages of 11%, 10%, 10% in order which equal

less than 180 user reviews for each.

17

FIGURE 3.1: The selected mobile applications with their overall
rating.

User’s reviews of seven applications are 160 users’ reviews for each. The

average per application is 107 users’ reviews. Nine apps are above the aver-

age meanwhile seven apps are less than 107 user’s reviews. The distribution of

retrieved users’ reviews per application can be shown in Table 3.3.

Our study will be conducted on English user review only. Accordingly, we

removed user reviews, which, were written in other languages. Moreover, user

reviews with emojis, rating only, and empty descriptions were removed.

18

FIGURE 3.2: Count of extended user reviews dataset per domain.

3.1.3 Data annotation

The retrieved user’s reviews from the selected mobile apps that are mentioned

earlier need to be labelled, similar to the Al-Kilani dataset as described in [8],

so they can be used to extend it. The data annotation was performed manually

through the following phases. In the first phase, the same classification method

used by Lu and Liang et al [23] was used in the data annotation process. In

addition to the author, three experts in software engineering participated in the

data annotation process. Two of them have Bachelor in computer science with

twelve years of experience in software engineering and information technology

in the Palestinian market. The third participant is a master student in software

engineering program at Birzeit University with proven seven years of experi-

ence as a software developer. Each participant manually classified a randomly

selected set of user reviews independently, based on ISO 25010 standards of

19

TABLE 3.3: Count of extended user reviews dataset per applica-
tion.

Applications Count of User Reviews
Coursera 26

Udemy - Online Courses 160
ZOOM Cloud Meetings 31

GoToWebinar 12
Google Meet 42

Microsoft Teams 80
WhatsApp Messenger 88

Skype 93
NetDania Forex Trader 160

PayPal Mobile Cash 110
Home Workout - Bodybuilding 160

Ana Paltel 160
My Account (Jawwal) 160

Investing.com 160
Bank of Palestine 160

MyFitnessPal 116

non-functional requirements [14].

The definitions of the non-functional requirements are elaborated for the re-

viewers based on standards ISO 25010. In case of disagreements on some clas-

sified reviews, the author and participants discussed and resolved the disagree-

ment together.

The main reason for choosing the following non-functional requirement (re-

liability, compatibility, security, performance, usability, portability) in this study

is that they are related to the external quality of the system as they can be noticed

by mobile application users.

Some non-functional requirements are related to the internal system quality

such as documentation, maintainability, functional suitability. Most people who

may be interested in this kind of requirements may be team leaders, software ar-

chitects, software developers, or project managers based on sponsors or project

20

owners. Moreover, they will not communicate through user reviews to express

their requests. Accordingly, all similar kinds were excluded from this study. For

these reasons in the manual annotation, we considered the following categoriza-

tion of users’ reviews; reliability, compatibility, security, performance, usability,

portability, learnability.

In the second phase, and after exporting and preparing the user review, all

the user reviews were imported into a database, and published on a specially

designed website 3 and Github 4 , to make it easier for the reviewers to do the

annotation. The website consists of three webpages main, registration, and clas-

sification. The main page includes the instructions and information provided

for the reviewers. It is useful to perform the annotation task correctly and to

provide a better understanding of intended non-functional requirements with

examples. Figure 3.3 and Figure 3.4 below show a screenshot from the website.

The flowchart depicted in Figure 3.3 describes the manual annotation process.

FIGURE 3.3: Manual users review annotation flowchart.

3https://nasrisameerladaa.com/
4https://github.com/NasriLadaa/NasriSameerThesisSWEN860/

21

The followings are the considered software requirements categories in the

annotation process through the website:

1. Usability: “Degree to which a product or system can be used by specified

users to achieve specified goals with effectiveness, efficiency, and satisfac-

tion in a specified context of use” [29]. Example: ”I have to navigate into

three pages before reaching my appointment page”

2. Reliability: “Degree to which a system, product or component performs

specified functions under specified conditions for a specified period time”

[29]. Example: “After clicking on start call button the app crashes”

3. Portability: “Degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware, software or

other operational or usage environment to another” [29]. Example: “On

my tablet, it worked fine but on the phone, nothing appeared”

4. Performance: “Performance relative to the number of resources used un-

der stated conditions” [29]. Example: “ I have to wait 10 seconds to see all

my notifications”

5. Learnability: “Degree to which a product or system can be used by spec-

ified users to achieve specified goals of learning to use the product or sys-

tem with effectiveness, efficiency, freedom from risk, and satisfaction in a

specified context of use” [29]. Example: “I used many similar apps all of

them have a quick tutorial to get started

6. Compatibility: “Degree to which a product, system or component can ex-

change information with other products, systems or components, and/or

22

perform its required functions while sharing the same hardware or soft-

ware environment” [29]. Example: “My live match is not synced with

FIFA official schedule”

7. Security: “Degree to which a product or system protects information and

data so that persons or other products or systems have the degree of data

access appropriate to their types and levels of authorization” [29]. Exam-

ple: “This app allows weak password”

8. Functional Requirements: Things that the system shall allow, be able to

do, may be able to do. Example: “Can you add Call ambulance button so

we can make emergency calls faster”

9. Others: Include emotional expressions and not related functional or non-

functional requirements. Example: “Cool”, “I like this App.”

FIGURE 3.4: Website main page - Part 1.

The second page is the registration page as shown in Figure 3.6. It is used for

registering the expert’s details such as the email, job title, and years of working

experience. On the classification page, as shown in Figure 3.7, a user review is

23

FIGURE 3.5: Website main page - Part 2.

displayed on the page with the specified requirements categories, where, the re-

viewer read the given user review and select the most appropriate requirement

category and then proceed to the next review and so on. The expert participant

can skip any unclear review by clicking the skip button. Classified user reviews

are not appeared again for the same expert participant. Skipped user reviews

may be displayed another time for classifying based on the random function

that selects users’ reviews from the review in the database. The same user re-

view can be classified multiple times by different participants. The database

entity relational diagram and website pages are shown in Appendix A.

24

FIGURE 3.6: Register and log in to start the task.

FIGURE 3.7: Classification page with an example

To check the reliability of the annotation process and measure the agreement

degree among the experts the Kappa statistical test [13] is conducted and the K -

Cohen’s kappa coefficient value is calculated. More details about the Kappa test

and its result are illustrated in the subsequent sections.

25

3.1.4 Manual annotation results

Al-Kilani dataset [8] already contains 5422 classified user reviews out of 8,884

reviews. The classified users review categories are bug, new feature, perfor-

mance, security, usability. Bugs and new feature labeling are considered as func-

tional requirements, where the others are non-functional requirements. Accord-

ing to that, the number of functional requirements from the old dataset is 1443

review. For the new gathered dataset, the first author and experts classified and

reviewed all user’s reviews. Table 3.4 summarize the results of manual annota-

tion.

TABLE 3.4: First author user’s review and old dataset classifica-
tions.

First author user’s review and old dataset classifications.
Dataset Al Kilani Dataset New dataset Total

Total No of reviews 8,884 1,718 10,602
Classified 5422 1,693 7,115
Reliability 0 432 432

Compatibility 0 45* 45
Security 49 87 136

Performance 475 214 689
Usability 537 259 796

Portability 0 58* 58
Learnability 0 27* 27

Functional Requirement 1443 256 1,699
Others 0 315 315

*From the new dataset the number of user reviews that classified as Compat-

ibility is 45, as Learnability 27 and as Portability 58. By comparing the number

of average other classified class. It was agreed to drop those classes from the

conducted experiments.

26

TABLE 3.5: All datasets classification.

All datasets classification.
Classes Al Kilani DS Merged DS 3 classes Merged DS 6 classes
Security 49 136 136
Usability 537 796 796

Performance 475 689 689
Reliability 0 0 430

Functional Requirement 0 0 256
Others 0 0 315
Total 1061 1612 2622

3.1.5 Kappa Test

To mitigate the chance of creating a biased dataset, we conduct a group ses-

sion for three participants. Two of them have Bachelor in computer science with

twelve years of experience in software engineering and information technology

in the Palestinian market. The third participant is a master student in software

engineering program at Birzeit University with proven seven years of experi-

ence as a software developer. The group session was conducted online using

Zoom and was divided into four sections. Each section took around one hour

and a half. The first part is a comprehensive overview and background about the

topic. The second part is an explanation of the quality indicators of a software

system and non-functional requirements.

By computing Cohen’s kappa, we may assess the degree of agreement be-

tween the experts and the author. The Cohen’s Kappa coefficient, which de-

termines the percentage of agreement that is chance-corrected, is a frequently

used approach to assess the level of inter-rater agreement for categorical scales.

The coefficient’s outcome is scaled between -1 and +1, with a negative value de-

noting agreement that is worse than chance, a zero denoting agreement that is

exactly chance, and a positive number denoting agreement that is better than

chance.

27

The agreement is stronger if the value is nearer to +1. The degree of agree-

ment between two observers—an author and experts—and five categories—a

requirement, a design fault, a test, and some documentation—is computed. We

made use of kappa calculator online 5 . According to Fleiss [12], we reached a

degree of agreement measured between the author and experts of +0.8. Values

greater than +0.75 are described as high agreement. The test was conducted and

results are fine.

3.2 Research approach

This study was constructed to contain a sequential phase. The first phase should

be ready in order to be able to move into the next phase and so on until the last

phase. Phase 1 uses users reviews that we discussed in the data description

3.2. Phase 2 performs an important task, the preprocessing activities such as

tokenization, text cleaning, and normalization. Phase 3 focuses on using feature

engineering and word embedding methods, and then training a classification

model using machine learning. Finally, evaluate the results of the conducted

experiments. Figure 3.8 shows an overview of the system design.

3.3 System design

This section contains multiple sequential phases as below:

5https://www.graphpad.com/quickcalcs/kappa1/

28

FIGURE 3.8: System design overview

3.3.1 Preprocessing

This phase focuses on words inside the user’s review or sentences that carry

the meaning. User’s reviews are written in natural language, so their seman-

tic meaning can be affected by noises inside sentences. To keep the important

words and remove the noise words, these sentences should go through multiple

pipeline steps. The output of this phase is an input to the machine-learning al-

gorithms, which affects the performance of the overall system. To perform this

phase some NLP techniques 6 7 were used as follow:

6https://www.nltk.org
7https://spacy.io/

29

3.3.2 Tokenization

The objective of tokenization is to split the user’s review text into multiple units

by white spaces named tokens. These tokens should have semantic meanings.

Tokenization could be paragraphs, sentences, and/or words.

Tokenization is not regular. It is based on semantics and meaning. For ex-

ample, the word “didn’t” in the user review will be tokenized into “did” and

“not”. In regular tokenization, it will be considered as one unit and it will not

be tokenized.

3.3.3 Text cleaning

This step aims to remove all undesired and unwanted content inside the user

review, by applying the below techniques:

1. Punctuations marks removal Using regular expressions, a rule was de-

fined to remove all punctuations inside user review.

2. Stopping words removal Removing stop words helps in decreasing the

training time of the model. Moreover, it helps in improving the perfor-

mance and accuracy of classification, keeping meaningful tokens, and de-

creasing the size of the dataset. A natural langue-processing library was

used to remove stop words called NLTK toolkit 8. The followings are ex-

amples of English stop words; ’a’, ’about’, ’for’, ’from’, ’have’, ’against’,

’it’, ’ ’am’, ’ ’and’, ’any’, ’are’, "aren’t", ’as’, ’at’, ’be,

3. Non-alphabetic removal Removing numbers and special characters that

do not give any useful meaning or semantic.
8https://www.analyticsvidhya.com/

30

3.3.4 Normalization

The objective of the normalization step is to transform words into uniform se-

quence by applying the stemming that reduces word’s inflection and returning

it to root base and lemmatization that removes affixes from words.

3.4 Features engineering

The second stage of our methodology is extracting pertinent data from user re-

views and representing it in a way that is suited for machine learning. In our

method, we converted words into numeric features using two different ways.

The first method uses NLP techniques like Bag-of-Words (BoW) and TF-IDF

which rely on syntax to describe the grammatical structures or body of rules

that constitute a language. The second method, known as the word embedding

method, focuses on the semantics of words and considers their meanings as well

as how to group words together to make sense while also taking into account

syntactical rules. These technique were used along with the following five other

techniques in our system: Word2vec, Fasttext, Bert, D-Bert, Glove, and GPT3.

3.4.1 Syntactic vectorization methods

1. Bag-of-Words: A straightforward representation technique known as "bag-

of-words" or "term frequency" (TF) uses the frequency of terms in a given

document. After preprocessing the user reviews, a list of vocabulary from

every remark is created for comprehending BOW, for instance, with each

review represented as a numeric vector. Each vector has a length equal

to the number of words in the vocabulary list. Every item in the vector

that corresponds to a word in the vocabulary list will have a value equal

to the frequency of that word in that specific remark, or zero if the term

31

doesn’t appear in that review. In the matrix with dimensions (number of

user reviews * size of vocabulary list), all the vectors were reshaped.

2. TF-IDF: Term frequency-inverse document frequency (TF-IDF): TF-IDF

and BOW vary primarily in that they consider the weight of the words,

whereas BOW just considers the frequency of words across a text when

constructing the vector.

3.4.2 Word embedding methods

In natural language proceeding (NLP) word embedding is converting words

into a numeric vectors. These vectors represent the word’s meaning. Words

that are closer in the meaning are expected to be similar/close in the vector

space. This phase focuses on extracting useful features from user’s reviews. The

following are the most common word embedding pre-trained models, which are

used in the proposed system.

1. Word2Vec: is a method 9 used to implement bag of words and skip-gram

architectures that are used in different natural language processing appli-

cations, as shown in Figure 3.9. The input for is text corpus that will be

processed to a words vector. The method will construct a vocabulary from

the training set and then it learns the vector representation. Further in-

vestigation for the vector can be done by measuring the distance between

the specified word and the words around it. This method was created by

Google in 2013. It was trained on a news dataset from Google of about 10

billion words. Word2Vec can combine similar words vectors.

9https://code.google.com/archive/p/word2vec/

32

FIGURE 3.9: Architecture of Word2Vec [15].

2. GloVe: It is an unsupervised machine-learning algorithm that processes

word-word occurrences in a corpus that are represented in linear substruc-

tures of the word vector. The architecture of the Glove model is depicted in

Figure 3.10. Training GloVe can be computationally expensive initially es-

pecially for large corpora to populate the word-word matrix. The training

is done on non-zero occurrences of the word-word matrix which becomes

faster after populating the matrix as non-zero occurrence words are much

smaller than the words in the original corpus [2].

33

FIGURE 3.10: GloVe Architecture [21].

3. BERT: It stands for Bidirectional Encoder Representations from Trans-

formers (BERT). It is a fast pre-trained unsupervised machine-learning

model developed by Google that relies on a transformer to learn the con-

textual relationship between words. It is bi-directional as it looks on the

left and the right of the words opposing traditional methods that inves-

tigate sequences of words one direction at a time [3], as shown in Figure

3.11.

FIGURE 3.11: BERT architecture [17].

34

4. D Bert: it is a model aims to identify the semantic relationships between

the head and tail entities in a set of sentences {x1, x2, . . . , xn}. A bidi-

rectional transformer model that can represent words in unannotated cor-

pus by using position embeddings, segment and token. It uses the output

hidden vector as the semantic representation of the text and a symbol for

text classification. The model as shown in Figure 3.14 can be optimized

by adjusting the model parameters. The semantic text representation of

the model output can depict the nature of the language and facilitate the

subsequent for specific NLP tasks. Using pre-training model adopts, the

input sentence is a single sentence at the beginning of this sentence will be

added and a special token for the beginning and end of each entity at the

beginning is represented [18].

FIGURE 3.12: D-bert model architecture [18].

5. GPT3: It is an abbreviation for Generative Pre-trained Transformer 3 that

35

aims to produce the human-like text of simplifying it through using deep

learning. It is established in 2015 by a research laboratory for artificial in-

telligence known as OpenAI. The goal of it is to benefit humanity through

developing and promoting friendly AI and ensure Artificial General Intel-

ligence (AGI) [14]. GPT3 is considered an autoregressive language model

designed to generate a sequence of words starting from machine input

which is called prompt [14], see Figure 3.13. The model was trained based

on a very large unlabeled dataset from different websites such as Wikipedia

and other sites in multiple languages. The First GPT version release was in

2018 the model was trained using 110 million learning parameters. Learn-

ing parameters are values used during model training in neural networks.

GPT2 trained on 1.5 billion and Now, GPT3 trained on 175 billion [14].

Training activities include Chat boot, translation. Grammar correction, an-

swer questions [14]. GPT3, which uses an autoregressive language model,

is used to get words similarity and to augment users’ reviews [14]. Clas-

sification techniques will be used to calculate the weight and to train and

evaluate the classifiers.

6. FastText: It is an open-source library designed by the Facebook AI research

lab that allows the building of scalable applications for text classifications,

as represented in Figure 3.14. It uses successful concepts of natural lan-

guage processing such as a bag of words and n-grams. In addition, fast

text can be used for text representation and can work with multiple lan-

guages such as Czech, German and Spanish by using the language’s mor-

phological structure [5].

36

FIGURE 3.13: GPT3 model architecture [4].

3.5 Machine Learning Classifiers

In this thesis, three traditional classification algorithms; random forest, Naïve

Bayes, and ordinary artificial neural networks were used with the two tradi-

tional features BOW and TF-IDF, for classifying the target categories of the soft-

ware requirements from the user reviews. In addition, three classification meth-

ods based on the deep learning, DNN ANN„ SL-CNN, and ML-CNN were used

with the word embedding features such as word2vec, BERT, D-bert, Glove, etc.

37

FIGURE 3.14: FastText architecture [34].

3.5.1 Traditional machine learning

1. Random Forest (RF) It is a data mining technique to solve problems as-

sociated with the classification. In general, the growing ensembles of trees

and deciding the class type by voting improve the accuracy of the classifi-

cation. Random Forest grows each classification and regression tree from

a random vector [4]. RF prediction is determined by the majority of trees

voting after analyzing their output. Error merges to a limited value, as

overfitting is less likely to happen when adding trees with random forests.

RF achieves higher accuracy by reducing the bias by creating trees with-

out pruning and by reducing correlation by randomization of variables at

each node. The growing and voting process of RF is a multi-step process.

The first is using around two-thirds of the training set to grow RF trees

and the last third is calculated Out of Bag error (OOB). The second step is

choosing the number of variables from the variables pool. The third step

is to try multiple values to choose a minimal OOB error [4]. The perfor-

mance of each tree is tested using the OOB dataset. While growing trees

RF estimates unbiased error using the OOB data set. In addition, OOB is

used to measure the significance of variables in RF classification [4] [11]

38

2. Naïve Bayes The Bayes theorem is the foundation of the NB machine-

learning algorithm. In NLP applications, NB is one of the most well-

known and widely used supervised machine learning classifiers. It is used

in our study to define the category of technical debt and serves as the start-

ing point for all of our trials.

3.5.2 Deep learning classifiers

1. Convolutional Neural Networks (CNN) (Single and Multiple Layers)

CNNs are a subset of neural networks that were initially developed for

computer vision tasks that involved deep learning and were largely uti-

lized for image recognition and classification. Today, CNN is a cutting-

edge text categorization method. Depending on the picture resolution,

it accepts an input image as a 3-dimensional array. The image’s height

and breadth corresponded to two array dimensions. The color of the pixel

(RGB) is the third dimension. Convolutional, pooling, and fully linked in-

put layers make up the three primary levels of the CNN architecture [16],

as shown in Figure 3.15.

Convolution layer: The first layer in the CNN architecture is convolu-

tion. By applying a filter to the input data (picture), with regard to its

dimensions, this layer aims to extract features. Convolution learns visual

characteristics from tiny input data squares, preserving the link between

pixels.

Pooling layer: Usually, a convolution layer is added before the pooling

layer. This layer’s goal is to increase the amount of characteristics. This

makes the convolutional layer’s dimensions smaller in order to obtain the

39

FIGURE 3.15: CNN Architecture [29]

most crucial data. In order to minimize the dimensionality of the data, the

pooling layer mostly employs max or average pooling.

Fully connected layer: In CNN architectures, fully connected layers are

often discovered at the end, using the results of convolution and pooling

layers to forecast the best label and determine the class rankings.

We employed two architectural networks for the CNN: a single hidden

layer of basic CNN and multiple hidden layers of complicated CNN. The

number of layers distinguishes the two networks. While the complicated

CNN has three layers, the single-layer CNN only uses one layer for the

convolutional and pooling layers. As a result, the parameter reset was cor-

rected as follows: Filter count: 128; class count: 3 and 6; stride: 1; dropout:

0.2; batch size: 32; maximum epochs: 20. Filter size for layers in order: [2,

3, 4]. To obtain the ideal number of training epochs and avoid the over-

fitting issue. When a monitored metric stops improving, the model stops

learning. We utilized callback 10 as an early stopping parameter in the fit

40

model; the callback will halt training if the validation loss does not im-

prove for five successive epochs. "Relu" and "Softmax" are the activation

functions, while "Adam" is the optimizer. The trainable option is set to

false and our own embedding matrix is handed in as the weights param-

eter since we are not training based on our own embedding and the pre-

trained model is being used.

2. Artificial neural network (ANN): Artificial Neural Networks (ANN) con-

tain a large number of interconnected nodes (neurons) that convert a weighted

sum of inputs into an output of 0 or 1. The weighted sum is transferred to

output using sigmoidal transfer functions [4]. ANN can have input notes

matching the number of i outs, while the output notes number is deter-

mined according to the number of classes. When a neural network con-

sists of multi-layers it is called a multi-layer perceptron. Input nodes are

interconnected with hidden layer nodes that are connected to an output

node. A weight is assigned to each connection in ANN [4].

3. Deep Neural Network (DNN) A DNN is a group of neurons arranged in a

series of layers, where each layer’s activations are fed into the next layer’s

neurons, which then do a straightforward mathematical calculation (such

as a weighted sum of the input followed by a nonlinear activation). The

network’s neurons work together to accomplish a complicated nonlinear

mapping from input to output. Error backpropagation is a method for

modifying the weights of each neuron to learn the mapping between the

input and output from the data. Simply described, DNN is an artificial

neural network (ANN) having numerous layers between the input and

output layers, or it is a feedforward multilayer neural network design. To

41

conduct classification on related, unlabeled data, we will train it using a

collection of labeled data.

Below Figure 3.16 summarizes the main three phases in system design in our

study that we’ve already discussed in previous sections.

FIGURE 3.16: System design main phases.

42

3.6 Evaluation metric

According to our technique, the train and test subsets of the dataset are ran-

domly divided to evaluate the system. The test set is solely used to evaluate

the performance of the classifiers, whereas the training set is utilized to train

ML classifiers. It is important to note that the test dataset (holdout dataset) has

never been utilized in training.

We used a 80:20 train to test split as a general guideline. Which is the stan-

dard rule for handling small datasets. There are 5422 labelled reviews in Al-

Kilani (4337 train, and 1085 test), and 6113 labelled reviews in the extended

dataset (4890 train, and 1223 test).

Accuracy, precision, recall, and F1-score measures, which are the most typi-

cal classification performance metrics, were employed in all trials. Measure the

proportion of properly identified requirements to all true positive and false pos-

itive predictions using a precision metric (positive prediction value). Precision

measurement is described in Equation 3.1 [28]. The number of correctly catego-

rized needs was indicated by TP ("true positive"). The term "false positive" (FP)

indicates the number of incorrectly categorized cases.

Precision =
TP

TP + FP
(3.1)

While recall indicates the proportion of pertinent user review that were suc-

cessfully connected. Depending on the measurement’s goal, both metrics – ac-

curacy and recall – have different levels of significance. The recall equation is

shown in Equation 3.2 [28]:

Recall =
TP

TP + FN
(3.2)

43

The weighted harmonic average of recall and accuracy is known as the F-

measure. As a result, both false positives and false negatives are considered in

the F1-score computation. F1- score can be expressed as shown in Equation 3.3:

F − score =
2.P recision×Recall

Precision+Recall
(3.3)

44

Chapter 4

Experiments and Results

4.1 Experimental setup :

Google Collaboratory or Colab 1 was used to conduct all of the presented experi-

ments in this chapter. Colab is a cloud service that supports GPU processors that

allow running Python code on the cloud. Table 4.1 shows processor specification

was used for all experiments.

TABLE 4.1: Environment setup

Environment setup
Type Specification

CPU model Intel ® Xeon(R) CPU @ 2.20GHz
Cache size 56320 KB

RAM 13.3 GB
Disk 69 GB
GPU Tesla T4
OS Ubuntu 18.04.5 LTS

The data is split into 20% testing and 80% training in all conducted experi-

ments. Random State 1, epochs 30, batch size 32, verbose 1, Patience 3 to stop

training if value loss has not improved in 3 epochs. Class weight percentage

1ttps://colab.research.google.com/

45

for balancing the dataset classes. For the Deep Learning experiments, we used

DNN, ANN, BLSTM, SLCNN, and MLCNN across multiple phases The details

of the parameters are n_estimators which indicates the number of trees in the

forest. 100 trees were considered. class_weight is "balanced" which indicates the

“balanced” mode uses the values of y to automatically adjust weights inversely

proportional to class frequencies in the input data. Random Forest classifier

settings and parameters were n_estimators=100, class_weight="balanced”, ran-

dom_state=1. All the conducted experiments can be found on Github 2.

4.2 Preprocessing :

The textual data (user reviews) should be cleaned and prepared before using

it in the experiments. To achieve this a set of preprocessing steps mentioned

earlier in the methodology chapter were used in all conducted experiments as

the following.

4.2.0.1 Text cleaning:

This is the first step in preprocessing pipelines. This step eliminates irrelevant

data by defining and removing English stop words, removing non-alphabetic

characters, numbers, linebreaks, and tabs from the collected datasets. It can

be performed using a popular natural language toolkit in Python called NLTK

library [6].

4.2.0.2 Tokenization

Tokenization is the process of splitting the sentence (user review) into small

units called tokens (words) and then removing the punctuation marks. The

2https://github.com/NasriLadaa/ThesisExperiments2023SWENNasri.git

46

NLTK library [6] was used for text tokenization in all of the presented experi-

ments.

4.2.0.3 Normalization:

Text normalization includes three subs steps. First, convert the text of the users’

reviews to lowercase. Second, find each word’s Part Of Speech (POS) tags. The

third step and the last one is Lemmatization which returns the words to their

original root using the WordNet library [7].

4.3 Feature engineering

In the presented experiments, the following feature extraction techniques were

used to convert the text words into a format that can go along with machine

learning and deep learning classifiers.

• Bag of Words (BOW)

• TF-IDF

• GPT3 vectorization

• Word2Vec vectorization

• GloVe vectorization

• FastText vectorization

• BERT vectorization

• D-BERT vectorization

47

4.4 Experiments with the Traditional Techniques

This section presents the results of all conducted experiments using traditional

techniques for feature extraction and machine learning. The weighted average

of recall, precision, F1-score, and accuracy were used to represent the classifi-

cation performance in all experiments. Those techniques were trained on the

training data and evaluated through the test data of Al-Kilani and the extended

dataset.

4.4.1 Experiment set 1: Al-Kilani dataset (three classes)

This set of experiments includes two traditional classifiers, random forest, and

Naïve Bayes, trained and evaluated on BOW and TF-IDF features extracted from

the Al-Kilani dataset. It is worth mentioning here that the three classes of the

AL-Kalani dataset are performance, usability, and reliability. The results of these

four experiments are shown in Table 4.2.

TABLE 4.2: Al-Kilani dataset experiments performance metrics
with traditional classifiers.

Experiments with Al-Kilani dataset (3 classes)
Random Forest

Precision Recall F1-score Accuracy
TF-IDF 0.57 0.58 0.57 0.58
BOW 0.56 0.56 0.56 0.56

Naïve Bayes
TF-IDF 0.60 0.51 0.57 0.55
BOW 0.58 0.52 0.54 0.52

According to the results in Table 4.2 and the graphical representation in Fig-

ure 4.1, the results are very close, with the Random Forest classifier and TF-IDF

giving the best accuracy. Which are upper-performing Bag of Words with Ran-

dom Forest and TF-IDF and BOW with Naïve Bayes. The Lowest accuracy was

48

0.15 for using TF-IDF with Naïve Bayes.

FIGURE 4.1: The results of traditional machine learning (RF) with
TD-IDF and BOW for Al-Kilani dataset.

FIGURE 4.2: The results of traditional machine learning (Naïve
Bayes) with TD-IDF and BOW for Al-Kilani dataset.

49

4.4.2 Experiment set 2: Extended Dataset (Al-Kilani + New datasets)

In this set of experiments, the same two traditional classifiers used in exper-

iments set 1 described earlier, are re-trained and re-evaluated on the merged

dataset, with the same number of classes.

TABLE 4.3: Merged dataset experiments performance metrics
with traditional classifiers.

Extended Dataset
Random Forest

Precision Recall F1-score Accuracy
TF-IDF 0.66 0.64 0.63 0.64
BOW 0.66 0.64 0.63 0.64

Naïve Bayes
TF-IDF 0.67 0.35 0.39 0.35
BOW 0.65 0.60 0.61 0.60

According to the results in Table 4.3, the results for this set are approximately

similar. Using TF-IDF and BOW with Random Forest gave the same accuracy of

0.64. BOW with Naïve Bayes gave 0.60 accuracy, which is so near to 0.64. The

combination of TF-IDF with traditional classifier Naïve Bayes gave the lowest

accuracy score of 0.35 noting that in experiment set 1, it was also the lowest

among all other experiments.

FIGURE 4.3: The results of traditional machine learning (RF) with
TD-IDF and BOW for the Merged dataset.

50

FIGURE 4.4: The results of traditional machine learning (Naïve
Bayes) with TD-IDF and BOW using extended dataset.

4.4.3 Experiment set 3: Al-Kilani Dataset (6 classes)

In this set of experiments, the same four experiments are repeated on the Al-

Kilani dataset, but, this time with six classes (Usability, Reliability, Performance,

Security, Functional, and Others), instead of three. The results are presented in

Table 4.4 and Figures 4.5, 4.6 .

TABLE 4.4: Al-Kilani dataset experiments performance metrics
with traditional classifiers.

Al-Kilani Dataset (6 classes)
Random Forest

Precision Recall F1-score Accuracy
TF-IDF 0.53 0.49 0.47 0.49
BOW 0.46 0.44 0.41 0.44

Naïve Bayes
TF-IDF 0.52 0.38 0.4 0.38
BOW 0.50 0.48 0.48 0.48

According to the results in Table 4.4, the highest accuracy is 0.49 for the sys-

tem which is using TF-IDF and Random Forest. The results of other experiments

in this set are in the same range. TF-IDF and Naïve Bayes experiment final out-

put result is the lowest for the third time among experiments in this set also

among experiments set 1 and 2. The experiments set 1, 2, and 3 indicate among

51

all conducted experiments with the three datasets that the highest accuracy can

be achieved by combining TF-IDF and Random forest for the traditional tech-

niques.

FIGURE 4.5: The results of traditional machine learning (RF) with
TD-IDF and BOW for Al-Kilani dataset.

FIGURE 4.6: The results of traditional machine learning (Naïve
Bayes) with TD-IDF and BOW for Al-Kilani dataset with 6

classes.

52

4.5 Experiments using Deep Learning

In this set of experiments, five deep-learning classifiers were used; ANN, DNN,

and the two configurations of CNN, Single-Layer CNN (SL CNN) and Multiple-

Layer CNN (ML CNN). Six types of features were used with the deep learn-

ing classifiers. These features are extracted using pre-trained deep-learning lan-

guage models such as W2V, Glove, Fasttext, BERT, D-BERT, and GPT3.

4.5.1 Experiment set 4: Al-Kilani Dataset (three classes)

In this sub-section, the results of the experiments that use pre-trained models

with deep learning techniques are presented. Al-Kilani dataset with the three

classes, performance, reliability, and usability, were used to train and evaluate

these systems.

As shown from the results in Table 4.5, the GTP3 pre-trained model with the

ANN classifier achieved the highest accuracy (0.82) among all other experiments

in this experiment set. The lowest accuracy, 0.7, was achieved by GloVe pre-

trained model. Note that the accuracy of the other experiments in this set ranges

between 0.7 and 0.82. It is also noticed from these results that the ANN with the

six pre-trained model feature types significantly outperforms similar systems

with traditional techniques and features.

53

TABLE 4.5: The results of ANN and DNN classifiers using Al-
Kilani dataset with six classes.

Al-Kilani Dataset (3 classes)
ANN

Precision Recall F1-score Accuracy
W2V 0.71 0.71 0.71 0.71
GloVe 0.72 0.7 0.71 0.7
BERT 0.81 0.76 0.76 0.76
GPT3 0.82 0.82 0.82 0.82

FastText 0.75 0.71 0.72 0.71
D-bert 0.78 0.77 0.77 0.77

DNN
Precision Recall F1-score Accuracy

W2V 0.69 0.64 0.66 0.64
GloVe 0.68 0.62 0.63 0.62
BERT 0.71 0.67 0.66 0.67
GPT3 0.81 0.7 0.71 0.7

FastText 0.73 0.49 0.46 0.49
D-bert 0.76 0.75 0.75 0.75

Secondly, DNN experimented with W2V, Glove, Fasttext, BERT, D-BERT,

and GPT3. According to the results in Table 4.5, The highest accuracy was pro-

vided by using D-bert with a DNN of 0.75. The lowest accuracy was 0.49 for

Fast Text and DNN. For W2V, GloVe, BERT, and GPT3 the results were between

0.62 - 0.7, which is somehow near the highest, result experiment in this dataset.

D-bert with DNN can take second place accuracy-wise after GPT3 with ANN

from the above table.

54

FIGURE 4.7: The results of ANN with pre-trained models for the
Al-Kilani dataset.

FIGURE 4.8: The results of DNN with pre-trained models for the
Al-Kilani dataset.

Single Layer and Mutiple CNN experimented with W2V, Glove, Fasttext,

BERT, D-BERT, and GPT3. The results were as below:

55

TABLE 4.6: SL CNN and ML CNN performance metrics with all
pre-trained models for Al-Kilani dataset.

Al-Kilani Dataset (3 classes)
SLCNN

Precision Recall F1-score Accuracy
W2V 0.7 0.62 0.64 0.62
GloVe 0.71 0.68 0.69 0.68
BERT 0.62 0.63 0.58 0.63
GPT3 0.79 0.4 0.32 0.4

FastText 0.76 0.61 0.65 0.61
D-bert 0.51 0.33 0.26 0.33

MLCNN
Precision Recall F1-score Accuracy

W2V 0.68 0.68 0.68 0.68
GloVe 0.7 0.61 0.62 0.61
BERT 0.73 0.54 0.53 0.54
D-bert 0.75 0.74 0.72 0.74

According to the results in Table 4.6, GloVe with Single layer CNN performs

the highest accuracy 0.68 note that W2V, BERT, and FastText perform from 0.62

(+1) (-1). The lowest accuracy was for GPT3 and D-BERT which performed

0.40, 0.33 sequentially. The result for using same feature engineering with ML-

CNN was a little bit different as D-BERT performed the highest accuracy of 0.74.

Meanwhile W2V and GloVe results was similar to SL-CNN the lowest accuracy

performed by BERT (0.54).

ML-CNN and GPT3, FastText provided the lowest result among all experi-

ments in all experiment sets therefore they were removed from the results. GPT3

with ANN provides the highest accuracy result.

56

FIGURE 4.9: The results of SL-CNN with pre-trained models for
the Al-Kilani dataset.

FIGURE 4.10: The results of ML-CNN with pre-trained models
for the Al-Kilani dataset.

4.5.2 Experiment set 5: Extended Dataset

In this section, the results of using pre-trained models with the deep learning

classifiers that were mentioned above. The used dataset is a merged dataset

between the Al-Kilani dataset and an extended dataset on the three main classes

(Performance, Reliability, and Usability).

ANN and DNN experimented with W2V, Glove, Fasttext, BERT, D-BERT,

and GPT3. The results were as below:

57

According to the results in Table 4.7, For using ANN with feature engineer-

ing. W2V and GPT3 perform the highest accuracy 0.74. BERT and D-bert pro-

vide 0.70, 0.72 sequentially. Fast Text provided a result near to bert and D-bert

of 0.66. The lowest accuracy provided by GloVe of 0.64. For using DNN, Bert

acquired the highest accuracy over other feature engineering techniques of 0.73.

This results is also near for using ANN with Bert. Other feature engineering

techniques with DNN for this set provided accuracy between 0.61 - 0.69.

TABLE 4.7: ANN and DNN performance metrics with all pre-
trained models for the extended dataset.

Extended Dataset
ANN

Precision Recall F1-score Accuracy
W2V 0.74 0.74 0.74 0.74
GloVe 0.67 0.64 0.64 0.64
BERT 0.72 0.7 0.7 0.7
GPT3 0.75 0.74 0.75 0.74

FastText 0.7 0.66 0.66 0.66
D-bert 0.73 0.72 0.72 0.72

DNN
Precision Recall F1-score Accuracy

W2V 0.69 0.65 0.65 0.65
GloVe 0.62 0.61 0.61 0.61
BERT 0.74 0.64 0.64 0.64
GPT3 0.72 0.69 0.69 0.69

FastText 0.71 0.61 0.62 0.61
D-bert 0.74 0.73 0.73 0.73

58

FIGURE 4.11: The results of ANN with pre-trained models for
the extended dataset.

FIGURE 4.12: The results of DNN with pre-trained models for
the extended dataset.

According to the results in Table 4.8, using SL CNN with W2V, Fast Text, and

D-bert provided the highest accaucy of result 0.68. Meanwhile, GloVe provided

a result that is near to W2V, Fast Text and D-bert results which is 0.65. Using SL-

CNN with Bert provided low results. The accuracy of using GPT3 with Single

CNN was 0.12. It was removed from the results table because it is too low. For

using Mutiple layer CNN with BERT acquired the highest accuracy of the result

of 0.71 which indicates clearly that BERT can perform better with ML CNN over

SL CNN. GPT3 also provided high result of 0.70. Fast Text provided the lowest

59

result of 0.58. W2V, GloVe and D-bert were in the same range 0.62 (+) (-) 1.

TABLE 4.8: SL CNN and ML CNN performance metrics with all
pre-trained for extended dataset.

Extended Dataset
SLCNN

Precision Recall F1-score Accuracy
W2V 0.7 0.68 0.69 0.68
GloVe 0.68 0.65 0.65 0.65
BERT 0.12 0.35 0.18 0.35

FastText 0.7 0.68 0.69 0.68
D-bert 0.7 0.68 0.67 0.68

MLCNN
Precision Recall F1-score Accuracy

W2V 0.66 0.61 0.62 0.61
GloVe 0.65 0.62 0.62 0.62
BERT 0.71 0.71 0.71 0.71
GPT3 0.75 0.7 0.71 0.7

FastText 0.63 0.58 0.58 0.58
D-bert 0.68 0.63 0.63 0.63

60

FIGURE 4.13: The results of SL CNN with pre-trained models for
the extended dataset.

FIGURE 4.14: The results of ML CNN with pre-trained models
for the extended dataset.

4.5.3 Experiment set 6: Al-Kilani Dataset (6 classes)

In this section, the results of using pre-trained models with the deep learning

classifiers that were mentioned above. The used dataset is a Al-Kilani dataset

on the six main classes (reliability, usability, performance, security, functional

requirements, and others)

According to the results in Table 4.9, The overall acauccy for all the feature

engineering techniques are lower than other experiments set. Using ANN with

61

GPT3 provided the highest accuracy for result of 0.56. Other techniques pro-

vided similar results of accuracy from 0.41 - 0.49.

TABLE 4.9: ANN and DNN performance metrics with all pre-
trained models for Al-Kilani dataset (6 classes).

Al-Kilani Dataset (6 classes)
ANN

Precision Recall F1-score Accuracy
W2V 0.51 0.49 0.49 0.49
GloVe 0.43 0.41 0.41 0.41
BERT 0.49 0.49 0.49 0.49
GPT3 0.58 0.56 0.55 0.56

FastText 0.45 0.41 0.41 0.41
D-bert 0.49 0.49 0.48 0.49

DNN
Precision Recall F1-score Accuracy

W2V 0.43 0.39 0.33 0.39
GloVe 0.37 0.38 0.35 0.38
BERT 0.49 0.44 0.42 0.44
GPT3 0.44 0.42 0.38 0.42

FastText 0.39 0.34 0.32 0.34
D-bert 0.44 0.44 0.43 0.44

62

FIGURE 4.15: The results of ANN with pre-trained models for
the Al-Kilani dataset (6 classes).

FIGURE 4.16: The results of DNN with pre-trained models for
the Al-Kilani dataset (6 classes).

According to the results in Table 4.10, The highest results were acquired by

using Fast Text and Single Layer CNN with 0.48 accuracy. W2V and SL CNN

accuracy was near to FastText with 0.46. The Lowest accuracy was 0.34 for using

Bert and SL CNN together. The overall accuracy for other feature engineering

techniques was between 0.39 - 0.41. Regarding Multiple-layer CNN (ML CNN)

the highest accuracy was 0.49 for using bert and ML CNN. The lowest accu-

racy was 0.33 for Fast Text. The overall accuracy for other feature engineering

techniques was between 0.43 - 0.45.

63

TABLE 4.10: SL CNN and ML CNN performance metrics with
all pre-trained for Al-Kilani dataset (6 classes).

Al-Kilani Dataset (6 classes)
SLCNN

Precision Recall F1-score Accuracy
W2V 0.47 0.46 0.45 0.46
GloVe 0.46 0.41 0.39 0.41
BERT 0.3 0.34 0.29 0.34
GPT3 0.51 0.39 0.4 0.39

FastText 0.52 0.48 0.48 0.48
D-bert 0.43 0.43 0.42 0.43

MLCNN
Precision Recall F1-score Accuracy

W2V 0.5 0.43 0.4 0.43
GloVe 0.44 0.44 0.44 0.44
BERT 0.48 0.49 0.47 0.49
GPT3 0.42 0.43 0.4 0.43

FastText 0.34 0.33 0.33 0.33
D-bert 0.45 0.45 0.43 0.45

FIGURE 4.17: The results of SL CNN with pre-trained models for
the Al-Kilani dataset (6 classes).

64

FIGURE 4.18: The results of ML CNN with pre-trained models
for the Al-Kilani dataset (6 classes).

65

4.6 Comparison with Al-Kilani baseline system

As stated earlier in the introduction chapter, one of the main objectives of this

thesis is to study how well the deep learning techniques for feature extraction

and machine learning classification in recognizing the most common require-

ments from the user’s reviews, compared with the traditional techniques used

by Al-Kilani et. al. [8]. Therefore, we used the dataset and the system described

in Al-Kilani’s work as a baseline for our proposed systems. In our systems, we

tried to incorporate the deep learning techniques in the feature extraction and

classification stages. In addition, the dataset was extended by adding more user

reviews form different domains and for different requirement classes. Table 4.11,

4.12 summarizes the accuracies of the best systems of each experiment sets de-

scribed earlier in this chapter. It also includes the best accuracies of the results

obtained by Al-Kilani with random forest and Naïve Bayes classification algo-

rithms. Backing to RQ1 in chapter one we observed that using word embedding

techniques doesn’t provide significant improvement over the traditional tech-

niques. The reason for that can be because Al Kilani used different parameters

and settings for the experiment such as depth and numbers of trees. The rea-

son also could be because we used different domains in our dataset meanwhile

Alkilani used only healthcare user reviews.

66

Backing to RQ2 below Table 4.11 we observed that using three classes merged

dataset the ANN classifier provides a higher accuracy of 0.75 over other classi-

fiers. Secondly, ML CNN provides an accuracy of 0.74 and DNN provides an

accuracy of 0.73. We notice also that using deep learning techniques results are

a little bit more effective than traditional techniques compared to results in the

Al Kilani system.

TABLE 4.11: Comparison with Al-Kilani results

Al-Kilani Systems
Accuracy Precision Recall F-score No of classes

Naïve Bayes 0.68 0.68 0.69 0.68 3
Random Forest 0.72 0.73 0.72 0.69 3

Our proposed systems
Accuracy Precision Recall F-score No of classes

Naïve Bayes 0.67 0.65 0.60 0.61 3
Random Forest 0.64 0.66 0.64 0.63 3

ANN 0.75 0.74 0.75 0.74 3
DNN 0.73 0.74 0.73 0.73 3

SL-CNN 0.68 0.7 0.68 0.69 3
ML-CNN 0.74 0.74 0.74 0.74 3

Naïve Bayes 0.48 0.48 0.48 0.52 6
Random Forest 0.49 0.53 0.49 0.47 6

ANN 0.56 0.58 0.56 0.55 6
DNN 0.44 0.49 0.44 0.42 6

SL-CNN 0.48 0.52 0.48 0.48 6
ML-CNN 0.49 0.48 0.49 0.47 6

For RQ3 we observed that using deep learning techniques are more effective

than traditional in recognizing the three and six software requirements but for

the most six classes mentioned previously, the accuracy is less as shown in Table

4.12. The result for RQ2 and RQ3 can be justified because of number of user

reviews is not enough. Making the user reviews dataset larger will consolidate

the result. Also using user reviews with no constant number of words, we had

some user reviews with 30 words meanwhile others included 3 words only.

67

TABLE 4.12: Comparison of traditional techniques based on ac-
curacy.

Al-Kilani Dataset (6 classes) Extended Dataset Al-Kilani Dataset (3 classes)
Random Forest

TF-IDF 0.49 0.64 0.58
BOW 0.44 0.64 0.56

Naïve Bayes
TF-IDF 0.38 0.35 0.55
BOW 0.48 0.6 0.52

ANN
W2V 0.49 0.74 0.71
GloVe 0.41 0.64 0.7
BERT 0.49 0.7 0.76
GPT3 0.56 0.74 0.82

FastText 0.41 0.66 0.71
D-bert 0.49 0.72 0.77

68

Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we presented our proposed system for automatic classification

of apps user’s reviews extracted from Google play store. Around 10,600 re-

views were retrieved from many different applications from different domains.

A round 2,622 reviews were manually annotated by four software engineering

experts, indicating their confidence for each annotation. Some of the commonly

used traditional classifiers such as Naïve Bayes, Random Forest, and ordinary

ANN were used with the most common traditional feature extraction techniques

such BoW and TF-IDF were used for recognizing some of the software require-

ment classes from the user’s reviews. The traditional techniques were compared

with some of the common deep learning algorithms such as DNN and two con-

figurations of the CNN with some of the word embedding features such as

W2V, BERT, D-bert, Glove, Fasttext, GPT3, and others. A set of experiments

were conducted using Al-Kilani dataset and the extended dataset, which in-

cludes Al-Kilani dataset and the collected 1693 reviews. To make the results

69

comparable with the previous results achieved by Al-Kilani, some of the experi-

ments were conducted to recognize three major classes (reliability, usability, and

performance), and the others are designed to recognize six classes (reliability,

usability, performance, security, functional requirements, and others). For the

three classes experiments, the results show that the deep learning based tech-

niques outperform the traditional techniques. The best accuracy achieved by

the Random Forest classifier trained and evaluated on the TF-IDF features is

58%, compared with 82% achieved by the DNN classifier trained on GPT3. Sim-

ilarly, the deep learning techniques (SL CNN, ML CNN, DNN) outperform the

traditional techniques in the six classes experiments, with the best accuracy of

56% compared with 49% achieved by the random forest.

5.2 Future Work

The research of adopted NLP techniques and ML algorithm into requirement

classification is still continuing. Two primary direction can be investigated to

extend our work. First, we plan to expand the number of adopted software re-

quirement categories, such as (mutability, solubility, etc.. Second direction, we

can continually investigate the effectiveness of other ML approaches in recogniz-

ing software requirements from user’s reviews such as recurrent neural network

(RNN) and fusion multi models.

70

Chapter 6

Appendix A

FIGURE 6.1: UML Diagram

71

Bibliography

[1] In: Selenium automates browsers. https://www.selenium.dev/. (Accessed on 26/12/2022).

[2] In: GloVe: Global Vectors for Word Representation. https://nlp.stanford.edu/projects/glove/.

(Accessed on 04/01/2022).

[3] In: TensorFlow code and pre-trained models for BERT. https://github.com/google-

research/bert. (Accessed on 04/01/2022).

[4] In: The GPT-3 Architecture. https://dugas.ch/artificialcuriosity/GPTarchitecture.html.(Accessedon17/01/2022)..

[5] In: English word vectors. https://fasttext.cc/docs/en/english-vectors.html. (Ac-

cessed on 04/01/2022).

[6] In: NLTK python main Library , https://www.nltk.org/ [Accessed on May 20,

2023].

[7] In: Wordnet python Library, https://www.nltk.org/howto/wordnet.html [Accessed

on May 20,2023].

[8] Nadeem Al Kilani, Rami Tailakh, and Abualsoud Hanani. “Automatic

classification of apps reviews for requirement engineering: Exploring the

customers need from healthcare applications”. In: 2019 sixth international

conference on social networks analysis, management and security (SNAMS).

IEEE. 2019, pp. 541–548.

72

[9] Rishi Chandy and Haijie Gu. “Identifying spam in the iOS app store”. In:

Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality. 2012,

pp. 56–59.

[10] Ning Chen et al. “AR-miner: mining informative reviews for developers

from mobile app marketplace”. In: Proceedings of the 36th international con-

ference on software engineering. 2014, pp. 767–778.

[11] Nejdet Dogru and Abdulhamit Subasi. “Traffic accident detection using

random forest classifier”. In: 2018 15th learning and technology conference

(L&T). IEEE. 2018, pp. 40–45.

[12] Joseph L Fleiss and Jacob Cohen. “The equivalence of weighted kappa and

the intraclass correlation coefficient as measures of reliability”. In: Educa-

tional and psychological measurement 33.3 (1973), pp. 613–619.

[13] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. “The measure-

ment of interrater agreement”. In: Statistical methods for rates and propor-

tions 2.212-236 (1981), pp. 22–23.

[14] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its nature, scope, limits,

and consequences”. In: Minds and Machines 30 (2020), pp. 681–694.

[15] Giuseppe Futia et al. “Training neural language models with sparql queries

for semi-automatic semantic mapping”. In: Procedia Computer Science 137

(2018), pp. 187–198.

[16] Alex Graves and Alex Graves. “Long short-term memory”. In: Supervised

sequence labelling with recurrent neural networks (2012), pp. 37–45.

[17] Mutian He et al. “On the role of conceptualization in commonsense knowl-

edge graph construction”. In: arXiv preprint arXiv:2003.03239 (2020).

73

[18] Yuan Huang et al. “D-BERT: Incorporating dependency-based attention

into BERT for relation extraction”. In: CAAI Transactions on Intelligence

Technology 6.4 (2021), pp. 417–425.

[19] Claudia Iacob and Rachel Harrison. “Retrieving and analyzing mobile

apps feature requests from online reviews”. In: 2013 10th working confer-

ence on mining software repositories (MSR). IEEE. 2013, pp. 41–44.

[20] Jie Li et al. “A novel medical text classification model with Kalman filter

for clinical decision making”. In: Biomedical Signal Processing and Control

82 (2023), p. 104503.

[21] Chang Liu et al. “Semantic features based N-best rescoring methods for

automatic speech recognition”. In: Applied Sciences 9.23 (2019), p. 5053.

[22] Lefteris Loukas et al. “Breaking the bank with chatgpt: Few-shot text clas-

sification for finance”. In: arXiv preprint arXiv:2308.14634 (2023).

[23] Mengmeng Lu and Peng Liang. “Automatic classification of non-functional

requirements from augmented app user reviews”. In: Proceedings of the 21st

International Conference on Evaluation and Assessment in Software Engineer-

ing. 2017, pp. 344–353.

[24] Walid Maalej and Hadeer Nabil. “Bug report, feature request, or simply

praise? on automatically classifying app reviews”. In: 2015 IEEE 23rd in-

ternational requirements engineering conference (RE). IEEE. 2015, pp. 116–125.

[25] Walid Maalej et al. On the automatic classification of app reviews. 2016.

[26] Shervin Minaee et al. “Deep learning–based text classification: a compre-

hensive review”. In: ACM computing surveys (CSUR) 54.3 (2021), pp. 1–40.

74

[27] Dennis Pagano and Walid Maalej. “User feedback in the appstore: An em-

pirical study”. In: 2013 21st IEEE international requirements engineering con-

ference (RE). IEEE. 2013, pp. 125–134.

[28] David MW Powers. “Evaluation: from precision, recall and F-measure

to ROC, informedness, markedness and correlation”. In: arXiv preprint

arXiv:2010.16061 (2020).

[29] IOf Standardization. “Systems and Software Engineering: Systems and

Software Quality Requirements and Evaluation (SQuaRE): Measurement

of System and Software Product Quality”. In: ISO, Geneva, Switzerland

(2016).

[30] Styawati Styawati et al. “Sentiment analysis on online transportation re-

views using Word2Vec text embedding model feature extraction and sup-

port vector machine (SVM) algorithm”. In: 2021 International Seminar on

Machine Learning, Optimization, and Data Science (ISMODE). IEEE. 2022,

pp. 163–167.

[31] Muhammad Umer et al. “Impact of convolutional neural network and

FastText embedding on text classification”. In: Multimedia Tools and Ap-

plications 82.4 (2023), pp. 5569–5585.

[32] Li Yang et al. “Sentiment analysis for E-commerce product reviews in

Chinese based on sentiment lexicon and deep learning”. In: IEEE access

8 (2020), pp. 23522–23530.

[33] Yiming Yang and Jan O Pedersen. “A comparative study on feature selec-

tion in text categorization”. In: Icml. Vol. 97. 412-420. Nashville, TN, USA.

1997, p. 35.

75

[34] Rui Zhu, Delu Yang, and Yang Li. “Learning improved semantic represen-

tations with tree-structured lstm for hashtag recommendation: An experi-

mental study”. In: Information 10.4 (2019), p. 127.

	Introduction
	Overview
	Problem statement
	 Objectives
	Research Questions
	Contributions
	Thesis structure

	Literature Review
	Research Methodology
	Dataset description :
	 Al-Kilani dataset
	 Extended dataset
	 Data annotation
	 Manual annotation results
	 Kappa Test

	Research approach
	System design
	Preprocessing
	Tokenization
	Text cleaning
	Normalization

	Features engineering
	Syntactic vectorization methods
	Word embedding methods

	Machine Learning Classifiers
	Traditional machine learning
	Deep learning classifiers

	Evaluation metric

	Experiments and Results
	Experimental setup :
	Preprocessing :
	Text cleaning:
	Tokenization
	Normalization:

	Feature engineering
	Experiments with the Traditional Techniques
	Experiment set 1: Al-Kilani dataset (three classes)
	Experiment set 2: Extended Dataset (Al-Kilani + New datasets)
	 Experiment set 3: Al-Kilani Dataset (6 classes)

	Experiments using Deep Learning
	Experiment set 4: Al-Kilani Dataset (three classes)
	Experiment set 5: Extended Dataset
	Experiment set 6: Al-Kilani Dataset (6 classes)

	Comparison with Al-Kilani baseline system

	Conclusion and future work
	Conclusion
	 Future Work

	Appendix A

